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Nature of double critical points in binary solutions
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The nature of the reentrant demixing transition in binary solutions with H bonds is studied in the framework
of an Ising-like Hamiltonian with effective spin-spin interaction constant. It is taken into account that the
internal variables describing the H-bond network are characterized by the spatial time scales essentially shorter
than those for the spin variables. Due to this the contribution of H bonds to the effective spin-spin interaction
constant is described by thermodynamic methods. With the help of the catastrophe theory the classification of
possible types of phase diagrams leading to the double critical point is given. The influence of small quantities
of third component~electrolytes, water, and molecules similar to CCl4) is discussed.
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INTRODUCTION

The nature of the double critical point~DCP! and the
properties of a system near it were the subject of numer
investigations~see Refs.@1–3#!. Main attention was paid to
binary and quasiternary solutions in which the appearanc
a the DCP is connected with the formation of a stro
H-bond network. As an example we can give the ‘‘guayac
glycerin’’ solution@4#. Among many attempts to elucidate th
role of H bonds we note~1! quasichemical approach@5#; ~2!
the modeling of the interparticle interactions with the help
decorated lattice models isomorphic to the standard Is
model @6–8#; and ~3! the description of H bonds in th
framework of the Hamiltonian formalism@9#.

In Ref. @5# the original qualitative arguments o
Hirschfelderet al. @10# about the role of H bond were sub
jected to quantitative analysis within the quasichemical
proximation. It was shown that the competition of the effe
tive intermolecular repulsion with the attraction initiated
the formation of H bonds can lead to the demixing diagr
with upper and lower critical points. In Ref.@9# the forma-
tion of H bonds is modeled with the help of Potts variabl
The application of the renormalization procedure in Re
@11–13# allowed to achieve the adequate description of fl
tuation phenomena near the upper and lower critical po
as well as near the DCP. Besides, it was shown that, in p
ciple, the proposed Hamiltonian is able to reproduce m
characteristic features of phase diagrams of binary solut
@14#, including the DCP. In Ref.@15# a rather more simple
version of the Walker-Vause Hamiltonian@9# had been ana
lyzed within the mean-field approximation and all conc
sions made in Ref.@14# about the structure of phase diagram
were confirmed. It was shown that the internal Potts va
ables lead to the temperature dependence of the effe
spin-spin interaction constant.

In the clearest form this circumstance is manifested
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works @6,16#, where the decorated models of binary so
tions, isomorphic to the standard Ising model, are c
structed. Here the transformation to the standard Is
Hamiltonian is accompanied by the appearance of the ge
alized temperature, leading to the upper and lower criti
points. In this approach the ideology of H bonds is not us
however, the introduction of nontrivial lattice structures
initial models can be justified only at switching on strong
anisotropic interactions, in particular H bonds.

Unfortunately, in all such approaches the cooperat
character of H-bond network was not manifested explicit

In this paper we focus our attention on the quasitherm
dynamic nature of the temperature dependence of the e
tive ‘‘spin-spin’’ interaction constant in the Hamiltonians o
Walker-Vause type intended to describe the phase trans
in binary and quasiternary solutions with strong H bon
between molecules of different kinds. The H-bond network
considered as a subsystem, the behavior of which can
described in the thermodynamic terms. In particular, the
istence of smeared phase transition in it may give rise to
nonmonotonic temperature dependence of the effective s
spin interaction constant.

The work is organized as follows. In Sec. I the quas
hermodynamic description of the H-bond network in the s
tems with the Hamiltonian of Walker-Vause type is give
The analysis of possible types of the phase diagrams is
sented in Sec. II. The modeling of the effective spin-sp
interaction constant within such a description of H-bond s
system is carried out in Sec. III. The influence of small qua
tities of the third components is the object of Sec. IV. In t
Appendixes we consider~1! the mean-field approximation
for the free energy of the Ising model and the definition
the effective ‘‘spin-spin’’ interaction;~2! the electrostatic en-
ergy of an admixture particle, and~3! the fluctuation multi-
pole interaction of the admixture particles.

I. TEMPERATURE DEPENDENCE OF THE EFFECTIVE
INTERACTION CONSTANT IN THE GENERALIZED

ISING MODEL

The Ising magnet is the simplest model system, in wh
the critical point takes place. For the Hamiltonian
©2004 The American Physical Society01-1
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HI5(
^ i , j &

J~12SiSj !2(
i

N

h Si , J.0, ~1!

where Si are random variables taking the values61, the
summation is carried out only on the nearest neighbors.
equation of state~EOS! in the mean-field approximation ha
the structure

^Si&5tanhS J̃

T
^Si&1hD , ~2!

where

J̃5 J̃~q!uq505z J,

J̃(q) is the Fourier image of the spin-spin interaction on
lattice, z is the number of the nearest neighbors, and
Boltzmann constantkB51. From Eq.~2! it follows that the
critical point of the Ising magnet is determined by the eq
tion

J̃

Tc
51. ~3!

In such a system only one critical point is possible. T
system is ordered only atT,Tc (^S&Þ0) and completely
disordered (̂S&50) at T.Tc .

As is well known~see, e.g., Ref.@17#!, the demixing tran-
sition in a binary mixture is isomorphic to ferromagneti
paramagnetic one for the Ising model. However, becaus
more complex interparticle interaction the correspond
‘‘spin-spin’’ interaction depends on the temperature, pr
sure, and difference of the chemical potentials for the co
ponents. As a result more than one critical point can be
pected. If the effective spin-spin interaction constant of
corresponding Ising model depends on the temperature
critical point is determined by the equation

Tc5 J̃e f f~Tc!. ~4!

The temperature dependenceJ̃e f f appears in models mor
complex in comparison with Eq.~1!. The models developed
in Refs.@9# and@15# can serve as characteristic examples
such an approach:

J→Ji j ~s!5Ji j 1JH ds i ,s j
~5!

@9# and

J→Ji j ~s!5J1JHds i , 1 ds j ,1
. ~6!

@15#. The variabless i are the internal Potts variables and f
each sitei can assignq valuesn51, . . . ,q independently.
They are used to modelq internal degrees of freedom of
molecule.

It is easy to see that the model~5! corresponds to the
isotropic H bond, while Eq.~6! singles out one of the~direc-
tional! states. Because of the trivial identity
01150
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ds i ,s j
5 (

k51

q

ds i , k dk, s j

both these models can be considered as different limi
cases of the anisotropic model:

J→Ji j ~s!5J1JH(
k51

q

pkds i ,kdk,s j
, (

k51

q

pk51, ~7!

where the parameterpk can be considered as the weight
kth H-bond forming state of a molecule. The constantJ is the
isotropic part of the interaction of van der Waals type. W
assume thatJ.0, which corresponds to the following rela
tion between the constants of intermolecular interaction@18#:

JAB. 1
2 ~JAA1JBB!.

Note that in accordance with Eq.~1! only the ‘‘residual’’ part
of the interaction between the molecules ofA andB species
is taken into account. In other words, the influence of the
bonds between the molecules of the same type on the de
ing is ignored. To get the reentrant behavior in models
type Eq.~1! the interaction constantJH should take the nega
tive values. We expect thatuJHu/Tm.1, whereTm is the
thermal energy at the melting point, although for H bo
itself JH

AA/Tm.4 – 5. Analogously, the corresponding cont
bution to the entropysH per H bond satisfies the inequality

sH&1. ~8!

In this case in mean-field approximation the excessive in
nal energy of a binary mixture can be written in the form

E5N c~12c!J̃e f f , J̃e f f.0, ~9!

wherec is the concentration of one of the components.
In the mean-field approximation with respect to spin va

ablesSi all such models based on the introduction of t
internals variables lead to the EOS:

x5
^sinh@b J̃~s!x1b h#&s

^cosh@b J̃~s!x1b h#&s

, ~10!

wherex5^Si& andJ(s) is the energy of ‘‘spin-spin,’’ which
explicitly depends on the ‘‘internal‘‘~Potts-like! variables
like in Eq. ~7!. The angular brackets

^•••&s5

(
s

. . . exp@2b J̃~s!#

(
s

exp@2b J̃~s!#

denote the average over internal degrees of freedom, w
are considered independent ofSi . Here we assume that th
introduction of the mean-field approximation for the sp
variablesSi does not change the part of interaction connec
with s variables.

The situation here is rather similar to that in spin glass
where the interaction energyJ i j is considered as a random
1-2
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variable over the configuration space@19#. So, the influence
of the H-bond network cannot be neglected in considera
of glassy states of liquids such as water, glycerin, etc@20#.
However, unlike the spin glasses, the characteristic spa
time scales for variables describing the H-bond network
binary solutions are much shorter in comparison with th
for spin variables. It means that 1! the averaging on interna
variables can be performed independently. This circumsta
allows us to introduce by the definition the effective ‘‘spi
spin’’ interaction energyJ̃e f f ~see also Appendix B!:

J̃e f f~T!5^J̃~s!&s5z J1zH~T!JH , ~11!

where zH(T) is the average number of H bonds per m
ecule:

zH~T!5K (
j ,k51

q

pkds i ,kdk, s jL
s

,z. ~12!

The residual energy and the entropy come from the in
nal degrees of freedoms i . To reduce analytical difficulties
we use the mean-field approximation for thes variables also
~see, e.g., Ref.@21#!.

If the mean-field approximation for the internal variabl
s is used for Eq.~12!, we can write

zH~T!5z(
k51

q

pkyk
2 , ~13!

where

yk5^ds,k&s<1. ~14!

It is clear that Eq.~13! is equivalent to neglecting the corre
lations between the different internal states of the molecu

To guarantee the isomorphism with the standard Is
model the value ofJ̃e f f(T) should be positive. In principle
this does not exclude the possibilityuJHu.J for the bare
constant of H-bond interaction.

From the definition it is clear thatyk is nothing but the
probability for the molecule to be inkth internal state. Note
that according to its definition Eq.~11!, in the mean-field
approximationJ̃e f f can be treated as the internal energy
the subsystem of H bonds.

In general, the variablesx and y are determined by the
system of two nonlinear equations. To get the qualitat
picture we will consider the vicinity of the critical point
wherex50 andh50. There we denote the values ofyk as
yk

(0) . In such a state all thermodynamic variables depend
the whole set$yk

(0)%,

yk
(0)5

(
s

ds,kexp@2bJ~s;$yk
(0)%!#

Zs
,

Zs5(
s

exp@2bJ~s;$yk
(0)%!#. ~15!
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The closed loop coexistence curves appear when the solu
of Eq. ~4! bifurcates. Namely, besides the Ising-like soluti
with small y(0);1/q,Tu.1q@1, either one or two others
y(u)(T)>y( l )(T) appear, thus giving rise to the reentrant b
havior. Sure, the mean-field bifurcation of state for the int
nal degrees of freedom described above in terms ofy(T)
should be corrected via taking into account the fluctuatio
Nevertheless, we will suppose that the topology of the ph
diagram remains unchanged. Besides, as has been
above, the dependence of the interaction constantJ on the
internal variabless regardless of the specific model leads
the temperature dependence ofJ̃e f f . The general condition
on this dependence for the appearance of the reentran
havior will be derived below.

As follows from above, the H-bond network can b
treated as a subsystem, which is described by thermo
namic methods. As a result, the change of H-bond orde
in some solutions can be considered as a smeared phase
sition or a succession of such transitions. A similar situat
is characteristic for magnetic media. There the interaction
spins with the translational degrees of freedom is often n
ligibly small and therefore a sharp paramagnet
ferromagnetic phase transition is possible. As it follows fro
above, the continuity ofJ̃e f f(T) with respect to the tempera
ture is the natural physical demand imposed on it.

The existence of high- and low-density supercooled wa
with different character of H-bond ordering in such me
stable phases is a clear demonstration of the smeared p
transition in the subsystem of H bonds. Besides, the ano
lies of density and compressibility in normal water are a
the results of macroscopic transformations of H-bond n
work. Thus we can introduce the effective mean field, w
the energyJ̃e f f depending on the temperature~see Appendix
B!. This reflects the smeared character of the phase trans
in the H-bond system.

II. POSSIBLE TYPES OF PHASE DIAGRAMS

From the general point of viewJ̃e f f(T), introduced
above, should have natural low- and high-temperat
asymptotes:

b J̃e f f~T!}
1

T
if T→0 or T→`, ~16!

i.e., the onlya priori physical constraint imposed onJ̃e f f is
its boundedness. In accordance with our arguments, the
ticeable temperature dependence ofJ̃e f f takes place only
near the points of smeared phase transition in the subsy
of H-bonds. For the simplicity we assume that there is o
one point of such a transition. In such a case more than
critical point may appear if the valueJ̃e f f changes signifi-
cantly enough with the temperature due to the reconstruc
of order in the subsystem of H bonds. If there is an additio
parameter of statel, e.g., pressure or concentration of th
admixture, the value ofJ̃e f f depends on this parameter too
1-3
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Let Ta andTb be the points of local minimum and max
mum of the function

j ~T;l!5
J̃e f f~T;l!

T
~17!

at some fixedl ~see Fig. 1!, wherel stands for the set o
additional parameters of state~pressure, chemical potentia
etc.!.

From Fig. 1 and the condition given by Eq.~4! it is clear
that there exist different types of phase diagrams, with
without closed loop. Depending on the number of roo
(<3) of Eq.~4!, the phase diagram is the ‘‘superposition’’ o
the closed immiscibility curve with upper and lower critic
points and a curve with upper critical point only.

There are the following characteristic situations:

j ~Ta ;l!.1 or j ~Tb ;l!,1,

j ~Ta ;l!,1, j ~Tb ;l!, ~18!

j ~Ta ;l!51 or j ~Tb ;l!51.

In the first case only one root of Eq.~4! exists. This is the
only ~‘‘upper’’ ! critical point of a system. In the second ca
Eq. ~4! has three solutions:

T0,Tl,Tu

corresponding to two upperT0 , Tu and one lowerTl critical
points. The coexistence curve of a system consists of
parts: the closed loop with upper and lower critical poin
Tl,Tu and the separated curve with the upper critical po
at T0 ~see Fig. 1!. Namely, this type of phase diagram corr
sponds to the models investigated in Refs.@15,16#.

Merging the rootsTl , Tu of Eq. ~4! at Tb , the equality
J̃e f f(Tb)/Tb51 means that the closed loop disappears
the DCP appears. The degeneracy of the rootsT0 , Tl at Ta ,
when J̃e f f(Ta)/Ta51, leads to the so called critical doub

FIG. 1. Phase diagram for the system with closed loop bino

and corresponding temperature behavior ofb J̃e f f
01150
d
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d

point ~hour-glass form of the phase equilibrium line! ob-
served in binary gases such as He1Ne, Ne1Xe, etc.@1#

It is possible that because of the specific thermodyna
properties one or both of the left and right points (T0 andTu
in Fig. 1! are out of the stability region of the considere
equilibrium phases so that the corresponding part of
phase diagram with corresponding phases is inaccessibl

Within the general framework of singularity theory@22–
24# the described situations correspond to the statement
in a one-parameter family of functions~17! only A3 catastro-
phe, with respect to the variableT, is possible~see Fig. 1!.
This is equivalent to the condition that the equation

d

d T
S J̃e f f

T
D 50 or T

d J̃e f f

d T
2 J̃e f f~T!50 ~19!

has no more than two solutions.
From a simple geometric interpretation of Eq.~19! and

natural constraint of boundedness ofJ̃e f f it follows that the
criterion for two roots of Eq.~19! to appear is the existenc
of the inflection pointTinfl for J̃e f f(T). There can be three
types for the temperature behavior ofzH(T) , which lead
qualitatively to the samej (T;l). They are shown in Fig. 2
and Fig. 3. Note that the behavior forJ̃e f f(T) shown in Fig.
2 is a consistent with the natural assumption thatzH(T) is a
monotonically decreasing function of the temperature, wh
other effects important for the H-bond network structu
such as thermal expansion are not taken into account.
change in structure leading to the appearance of the reen
behavior should be attributed to the increase in the aver
number of H bondszH(T) with decrease in temperatureT
,T* . This is exactly in agreement with the picture whe
the upper critical point is identified with that of van de
Waals type, while the lower critical point, wherezH(Tu)
,zH(Tl), is due to H-bond network formation because
anisotropic interactions. The types II and III shown in Fig.
correspond to the nonmonotonous temperature behavio
zH(T). It is interesting to develop the models in which su
possibilities are realized.

al

FIG. 2. The temperature behavior ofJ̃e f f(T), corresponding to
Fig. 1.
1-4
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FIG. 3. Two other types of
temperature behavior ofJe f f(T)
leading to qualitatively same be
havior j (T;l) shown in Fig. 1.
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It is instructive to consider the behavior of the excess
entropy, corresponding toJ̃e f f depending on the temperatur
The schematic temperature dependence of the entropy is
picted on Fig. 4. Note the characteristic S-shaped temp
ture dependence of the excess entropy, i.e., starting from
per critical point the immiscible phase is more ordered th
the miscible one, until order parameter reaches its maxim
Here the situation resembles that in a superconduc
conductor transition, where the equality of the entropies
the normal and superconductor states takes its place a
critical point itself and atT50 K, when the order paramete
takes maximum value~see, e.g., Ref.@25#!. The analog of the
point T50 K in our case is the temperatureTM , which cor-
responds to the maximum value of an order parameter,
concentration of one of the components. In other words
such a point the excess free energy is equal to the ex
internal energy.

Below the temperatureTM the excess entropy become
positive, i.e., the immiscible state becomes relatively dis
dered but is still stable because of the energetic effect of
interaction. Further below, the entropy vanishes at the lo
critical point. It is clear that such S-shape behavior of
excess entropy is in full agreement with the approach ba
on Landau-Ginzburg effective functional@1,21#.

The result obtained has more simple formulation in va
able, which is Legendre conjugated toT,

FIG. 4. Qualitative temperature behavior of the excessive
tropy S ~solid curve! of the mixture with the closed immiscibility
loop. The dashed curve is the schematic dependence of the
parameterx.
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dJ̃e f f

d T
. ~20!

In this representation Eq.~19! takes the form

J̃e f f
(L)~p!50, ~21!

where

J̃e f f
(L)~p!5pT2 J̃e f f ~22!

is the Legendre transform~see, e.g., Ref.@26#! of J̃e f f . Note
that the existence of inflection points for the function resu
in existence of the cuspidal~return! points for the graph of its
Legendre transform~see, e.g., Ref.@26#!. In such a sense
necessary and sufficient condition for the reentrant beha
to occur is the existence of solutions of Eq.~21! with the
cusp singularity. The special points of other types such
critical inflection point ~CIP! or quadruple critical point
~QCP! according to terminology of works@1,27# are possible
for the systems with at least two thermodynamic fields,
particular in ternary solutions@27#. The catastrophe theor
classification is as follows:~1! CIP corresponds to the germ
of A3 catastrophe for thej (T;l); ~2! QCP is the germ ofA4
catastrophe for thej (T;l).

III. THE THERMODYNAMIC APPROACH FOR THE
MODELING OF J̃eff

In the preceding section we emphasized that the H-b
network may be considered as an almost independent
system, the properties of which can be described by ther
dynamic methods. The corresponding thermodynamic v
ables are naturally named by the structural functions. T
simplest and the most important are~1! the average numbe
of H-bonds per moleculezH(T,P) and the paramete
tH(T,P) describing the bending of H-bond network. In th
case of pure water this parameter is known as the tetra
dricity parameter, which measures the deviation from
ideal geometric H-bond network. These parameters can
found with the help of the numerical simulations~see Ref.
@28#! or within the special statistical methods~see, e.g., Refs
@29,30#!.

The arbitrary thermodynamic functionQ(T,P) of the
H-bond network can be expanded in a series with respec
structural functions~like the Hilbert’s principle in the theory
of invariants@31#!:

Q~T,P!5l1zH~T,P!1l2tH~T,P!1o~zH ,tH!. ~23!

-

der
1-5
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The successful application of such an approach for the
scription of the anomalous behavior of the density and
dielectric permittivity of pure water was proposed in Re
@32#. The formalism of structural functions allows to unde
stand adequately the difference between low- and h
density water observed under deep enough supercooling~see
Ref. @33#!.

From this point of view the contributionJ̃H(T,P) of H
bonds intoJ̃e f f can be represented in the form

J̃H~T,P!52a1zH1a2tH1•••, a1 ,a2.0. ~24!

The coefficienta1 is close touJHu used above in the simpli
fied lattice approach where the deformations of the lat
were neglected. Obviously, the functionszH andtH have op-
posite temperature dependencies.

Near some temperatureT* the structural functionzH can
diminish sharply enough, which corresponds to the smea
phase transition in the subsystem of H bonds. As a result
behavior of J̃e f f(T) in the vicinity of T* is of sigmoidal
character~see Fig. 2! and can stimulate the demixing in b
nary solution.

The formalism of structural functions allows also to e
tablish the connection between the variations ofJ̃e f f and the
dielectric permittivitye of a system. Indeed,e can be repre-
sented in the form

e21

e12
5

4p

3
n@~12x!ae f f

(1)1xae f f
(2)#, ~25!

wheren is the density of molecules andae f f
( i ) , i 51,2 are the

effective molecular polarizabilities of the components.
general,ae f f

( i ) includes the electronic and dipole parts:

ae f f
( i ) 5ae

( i )1ad
( i ) .

The first term is close to the electronic polarizability of
isolated molecule and therefore its temperature and con
tration dependence is weak. The second term has the s
ture

ad
( i )5

di
2

3kBT

in which the effective dipole momentdi within our approach
should be represented as

di5di
(0)~11r 1zH1r 2tH1••• !.

It means that the nonmonotonic behavior of the structu
functions should become apparent in corresponding pe
liarities of the dielectric permittivity.

IV. PERTURBATIONS OF THE BINARY MIXTURE
PARAMETERS OF THE PHASE EQUILIBRIUM

In recent years a lot of studies have been carried ou
analyze the influence of different kinds of perturbations
the phase diagram of the binary mixtures with H bondin
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These perturbations include changing the external pres
@2#, variance of isotopic composition@34#, and small addition
of the third component@4#, in particular, electrolyte@35–37#.
Experimentally it was noted that the shifts of the upper a
lower critical points with variation of either pressure or thi
component addition are almost the same at least qualitati
@38#. Below we discuss the influence of these perturbatio
within the approach presented in the previous sections.

The thermodynamic potential of a binary system intrin
cally depends on three parameters of state. Two of them
‘‘external fields‘‘ the temperatureT and pressureP, another
field is the difference of the chemical potentials of the co
ponentsm5m12m2 @39#. Then the Gibbs free energy is

dg52s d T1v d P1m dx1 , m5m12m2 , ~26!

wherexi5Ni /N is the molar fraction of the components an
s, v, andm i are the specific entropy, the volume, and chem
cal potentials correspondingly. We will use also the poten
f conjugated tog:

f ~T,P,m!5g~T,P,x!2x1m,

which according to Gibbs-Duhem identity is the chemic
potentialm2 of another component.

Further we fix the type of the component chosen in E
~26! and will omit the subscript. The corresponding critic
points (Tc ,Pc ,xc) are determined by the conditions@39#

]2g

]x2 U
T,P

50,
]3g

]x3U
T,P

50. ~27!

The thermodynamic fieldsT and P drive the equilibrium
phase separation in the two phase region. From the ther
dynamic point of view the conditions~27! are analogous to
that for the liquid-vapor critical point. This is the basis fo
the isomorphism between these systems and simple liqu
The concentrationx serves as the initial order parameter f
the demixing transition. Its conjugated field ism. According
to the catastrophe theory@22–24# with the help of the
smooth transformationh→c,

c5h1g1~P,T! h1g2~P,T!h21•••, ~28!

where h5x2xc , the Landau thermodynamic potentialg
near the critical point is reduced to the canonical form

g̃~c;T,P!5
a4~T,P,m!

4
c41

a2~T,P,m!

2
c21a1~T,P,m!c.

~29!

The explicit expressions forai andg i can be easily obtained
~see, e.g., Ref.@23#!. The treatment of the isomorphism prin
ciple in terms of the canonical forms was developed in R
@21# for the specific case of the systems with the DCP.
should be noted that the theory of singularities of smo
mappings@24# admits reduction to the canonical form~29!
only locally, in the vicinity of the critical point, where the
series~28! converges. The approach, developed in Ref.@40#,
1-6
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works directly with the Hamiltonian and allows to constru
the transformation~28! nonperturbatively.

The dependence of the coefficientsa1 and a2 of the ca-
nonical form~29! on the state variables determines the top
ogy of the phase diagram. Note that such a dependenc
general is nonlinear even in the mean-field approximat
because of the nonlinearity of the transformationx→c. Due
to this transformation the isomorphism between Ising mo
and the critical behavior of the binary mixture is establish
@41#. In the vicinity of the critical point,a1 and a2 can be
approximated by simple linear functions of the initial the
modynamic fields@42#.

The inclusion of fluctuation effects can be done with t
help of the renormalization group method.

The influence of small admixtures within the method
effective ‘‘spin-spin‘‘ interaction can be done with the he
of thermodynamic perturbation theory@39#. Within the ap-
proach proposed above, such perturbations modify the v
of J̃e f f causing its dependence on the concentrationc of the
admixture according to

f CW~T,P,J̃e f f1d J̃e f f!5 f CW~T,P,J̃e f f!1w~T,P,x,c!,
~30!

wherew is the excess thermodynamic potential caused by
small addition of the third component. In other words,w is
the part of the thermodynamic potentialF of an admixture

F~T,P,x,c!5F~Tc ,Pc ,xc ,c!1w~T,P,h,c!, ~31!

which depends on the order parameter. The first term in
~31! is included into regular part of the thermodynamic p
tential of the system.

The corresponding thermodynamic potentialf CW of the
equivalent Ising model is as follows~see Appendix B!:

f CW~T,h; J̃e f f!52
J̃e f f

2
x21TFxarctanh~x!1

1

2
ln~12x2!G

2x h, ~32!

where x(T,h; J̃e f f) is determined by the Curie-Weiss EO
~B3! in which the conjugated fieldh is the difference of the
chemical potentials of the phases.

Thus the change of the phase diagram of the binary m
ture is interpreted as the corresponding variation ofJ̃e f f :

d J̃e f f5
w

d f

d J̃e f f

. ~33!

Note that due to the definitionw50 in disordered phase
wherex50. Taking into account the equation for binodal

x253~b J̃e f f21!1o~b J̃e f f21! ~34!

and the expansion for the excessive free energy:

f 5 1
2 ~12b J̃e f f!x

21 1
12 x41o~x4!, ~35!
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for the derivatived f /d J̃e f f we get:

d f

d J̃e f f

5
3

2
~12b J̃e f f!1o~b J̃e f f21!,0, for b J̃e f f.1.

~36!

Thus the sign ofd J̃e f f is opposite to that forw. Therefore in
accordance with Eq.~4! ~see also Fig. 1! the change of the
phase equilibrium is determined by the following:

b~ J̃e f f1d J̃e f f!51, ~37!

and if d J̃e f f.0 the closed immiscibility loop will expand o
even may appear at sufficiently big value ofd J̃e f f , while if
d J̃e f f,0 the loop will shrink or even may disappear.

A. Influence of electrolyte admixture on the phase equilibrium
of the H-bond mixtures

The influence of small addition of the electrolyte
Debye-Huckel approximation can be described as

f ~T,h,c!5 f CW~T,h!1wDH~T,P,c!, ~38!

where

wDH~T,P,c!5
~P T!1/2

24p
~G32Gc

3!, G25

4 p(
a

e2 za
2ca

eT
,

e is the dielectric permittivity of a binary mixture,ca is the
concentration of ions ofath kind, andza is their valency.
Note that due to symmetry with respect to the type of
components the value ofm does not change because of t
equal shifts ofm1 andm2. It is clear also that due to conti
nuity of the thermodynamic potential the valueG is the same
in both phases since it determines the thermodynamic po
tials for the electrolyte@39#.

The differenceG(x)2Gc , which depends on the concen
tration x through the dielectric permittivity~see Ref.@43#!,
may be either of the same sign or has different ones in
vicinity of the upper and lower critical points. In the firs
case, in accordance with Eq. 33 the coexistence loop ei
shrinks or expands almost symmetrically with respect to
upper and lower critical points. In the second case the up
and lower critical points shift in the same direction, thou
these displacements may be different.

B. Influence of hydrophobic admixture molecules of type CCl4

The addition of CCl4 molecules to the guaiacol-glyceri
mixture leads to the appearance of the closed loop of imm
cibility at very small concentrations@4#. It is naturally ex-
plained by the breaking of the H-bond network and as
sequence the increase ofJ̃e f f so that J̃e f f(Tb).1 and the
closed loop appears~see Fig. 1!.

The same effect is observed if water molecules are add
though their molar concentration is approximately four tim
greater in comparison with the case of CCl4 @4#.
1-7
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The admixture molecule CCl4 produces significant distor
tions in H-bond network in its vicinity. The breaking of H
bonds and their bending are connected with considerable
ergy. Therefore the solubility of such molecules is ve
small. Besides, the average energy per H bond diminis
which leads to noticeable variation of the phase diagram.
us consider the influence of such an admixture in more
tail.

We assume that H bonds break and are strongly disto
only in the monomolecular layer around CCl4. As follows
from simulations@44# and the spectroscopy measureme
@45#, a similar behavior of H-bond network is observed ne
the ions which is order breaker~chaotropes! in a dilute aque-
ous electrolyte solution. Although comparatively, the infl
ence of a molecule CCl4 due to its electroneutrality is muc
weaker. The breaking and bending of H bonds in the cl
neighborhood of CCl4 generate the appearance of the sp
taneous dipole moment, which can be attributed to an adm
ture molecule. As a result the interaction between admixt
molecules renormalizes strongly~see Appendix C!.

The increment of the free energy caused by the dissolv
of CCL4 molecules can be represented as following:

w5w01cac11 1
2 ca

2c21•••, ~39!

whereca is the concentration of the admixture molecules,w0
correspond to the ideal solution approximation,

c15cH1cd

is the one-particle contribution, which consists of two term
The first termcH corresponds to the breaking and bending
the H bond, the second onecd describes the formation of th
electric field around the admixture molecule. The pair co
tribution coefficientc2 for a dilute solution is equal to the
energy of the dipole-dipole interaction. The contributioncH
can be approximated as

cH;uJHuz, ~40!

where z is the number of broken H bonds in the surfa
layer.

To estimate the value ofcd we use the double layer ap
proximation. The corresponding result is derived in Appe
dix A:

cd52 pr a

e1~x!e2

2e1~x!1e2
(

m50,61
^ut1,mu2&, ~41!

wheree1(x) is the dielectric permittivity of a binary solu
tion, e2 is the effective dielectric permittivity of a cavity
formed by the admixture molecule, andr a is the radius of a
cavity similar to Kirkwood’s consideration of zwitterion
@46#. It is not difficult to see that

(
m50,61

^ut1,mu2&5
^ds

2&

r a
4

, ~42!

therefore
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cd52p
e1~x!e2

2e1~x!1e2

^ds
2&

r a
3

. ~43!

The solubilities of admixture molecules CCl4 in pure
guaiacol-glycerin are different since the parameters
H-bond networks of these substances differ essentially.
solubility of CCl4 in guaiacol is greater. Due to this the a
mixture molecules of CCl4 stimulate the demixing in the
solution discussed.

More formally, the demixing can be described in the fo
lowing way. In accordance with our assumptions, the so
tion of the third component changes the internal energy
the system by the value

DE5Naz~J12JH!, J15cd /z, ~44!

whereNa is the number of CCl4 molecules. The number o
broken H bonds in the neighborhood of an admixture part
is

z5n zvLx~12x!, ~45!

wherevL is the volume of the monomolecular layer,

vL'4pr a
2r s ,

r a is the radius of an admixture particle, andr s is the average
radius of a molecule in a binary mixture. From Eq.~9! and
Eqs. ~44! and ~45! it follows that the renormalized value o
J̃e f f is

J̃e f f
(r ) 5 J̃e f f1vLna~J12JH!. ~46!

Let us estimate the relation betweenc1 and JH . Assuming
that the dipole moments of molecules in a surface layer
not correlated, we may use the estimate

^ds
2&;z^dH

2 &,

wheredH is the variation of the dipole moment due to th
breaking or formation of a H bond. By order of magnitude

udHu<
dw

4
,

wheredw.1.7D is the dipole moment of an isolated wat
molecule@47#.

To get the estimate forcd it seems to be justified to pu
r a;5 Å ande1 , e2;1, which corresponds to the values
the dielectric permittivity on the frequencyvH;1/tH ,
where tH;10212 s is the typical lifetime of H-bond@47#.
Then

cd<kBTrz.

Since, in accordance with Sec. I,uJHu<kBTr , whereTr is
the room temperature, we obtain the estimate

cd1cH

kBT
.122z. ~47!
1-8
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The concentration of admixture molecules is determined
the formula@39#:

ca5
P

nskBT
expS 2

cd1cH

kBT D ,

whereP is the pressure of gas CCl4 contacting the solution
ns is density of the solution. In accordance with Eq.~45!
z;3–6, if r s53 andz52 – 4. At P51 bar the concentration
of admixture molecule

ca<102421023

agrees with experimental values@4# and shows the self
consistency of our approach.

From here it follows thatJ12JH.(@)1. Therefore the
increase ofJ̃e f f may lead to the phase separation of the h
mogeneous mixture. The physical mechanism of break
the H-bond network under addition of water molecules d
fers from that for CCl4. The formation of glycerin-water as
sociates is energetically profitable. It means that the adm
ture water molecules will stimulate the microdemixing in t
system. From this point of view the influence of water a
mixture is analogous to that for CCl4, i.e., the effective spin-
spin interaction constant of the binary solution becom
greater, though because of difference in geometric par
eters to produce the same effect the concentration of w
molecules is less than the corresponding concentration
CCl4.

DISCUSSION

The main attention in this paper was paid to the nature
the DCP in binary solutions with H-bonds. The influence
H bonds is discussed in the framework of an Ising-li
Hamiltonian with the spin-spin interaction, the value
which depends on the random internal variables characte
ing the H-bond network. In particular the Potts variables m
serve as the example. It is taken into account that the c
acteristic relaxation times in a H-bond network are ess
tially less in comparison with those for the spin subsyste
Due to this the spin-spin interaction in the Ising-like Ham
tonian should be determined by the averaged characteri
of the H-bond network. In other words the influence of
bonds is described with the help of the Ising Hamiltoni
with the effective constantJ̃e f f depending on the tempera
ture, pressure, and other external parameters of state vi
corresponding dependence of the structural functions
H-bond network. To describe the properties of H-bond c
tribution J̃H(T) into J̃e f f we apply the Hilbert’s principle in
accordance with whichJ̃H(T) can be expanded in a serie
with respect to the structural functions which form the co
plete basis for H-bond network mesoscopic descripti
Within the conception of such an effective Hamiltonian t
behavior of the binary solution with a small admixture of t
third component is possible. It was shown that the neu
admixture CCl4 leads to the increase ofJ̃e f f for the guayacol-
glycerin solution because of the decrease ofzH . As a result
the homogeneous solution becomes unstable and dem
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Thus the doubts about the role of H bonds stated in Ref.@4#
are groundless. It was shown that the admixture of wa
stimulates the demixing also because water molecules a
bonded mainly with the glycerin molecules. The grea
quantity of water molecules than that in case of CCl4 is ex-
plained by more intensive breakage of H bonds by CCl4.
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APPENDIX A: ELECTROSTATIC ENERGY OF A
PARTICLE

In accordance with our assumption, the dipole momen
an admixture molecule is formed by the molecules of a s
vent, which form a monomolecular layer around the adm
ture particle. Within the macroscopic electrodynamics
thickness of such a layer vanishes. Thus we come to a do
layer with some powert, which determines the work fo
passing the double layer. Inside and outside a particle,
potential of the electric field satisfies the Laplace equatio

Dw150, r .r a ,

Dw250, r ,r a ~A1!

and the boundary conditions

w12w254pt~r !,

e1

]w1

]r
5e2

]w2

]r
~A2!

at r 5r a .
It is not difficult to see that

w154p(
l 50

`
l e2

~ l 11!e11e2l S r a

r D l 11

t l ,mYl ,m~u,w!,

w2524p(
l 50

`
~ l 11!e1

~ l 11!e11e2l S r

r a
D l

t l ,mYl ,m~u,w!,

~A3!

where t l ,m are spherical components of the distributio
t~u,f!:

t l ,m5
1

4pE t~u,f!Yl ,m* ~u,w!dV,

1

4pE Yl ,m* ~u,w!Yl 8,m8~u,w!dV5d l l 8dmm8

The electrostatic energyW of a particle is determined by
the expression

W5
1

8p S E
ur u.r a

e1~¹w1!2dV1E
ur u,r a

e2~¹w2!2dVD ,

~A4!
1-9
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which can be rewritten in the form

Wd524pr a
2e1 R ]w1

]r
tdV. ~A5!

Substituting Eq.~A3! in Eq. ~A5!, we obtain

Wd52pr a

e1e2

2e21e1
(

m50,61
ut1,mu21•••. ~A6!

Explicit form of contributions of higher orders is also ev
dent.

APPENDIX B: MEAN-FIELD APPROXIMATION FOR THE
FREE ENERGY OF THE ISING MODEL AND THE

EFFECTIVE ‘‘SPIN-SPIN’’ INTERACTION

Here we derive the expression~32! for the Helmholtz en-
ergy in the mean-field approximation. Letx5^S& be the
magnetization. In the mean-field approximation the Ham
tonian ~1! is reduced to the following:

H52~h1 J̃x!(
i

Si , ~B1!

and the free energy per particle of the system is

Fmf~x;T,h!52T ln coshS J̃

T
x1

h

T
D . ~B2!

The parameterx is fixed by the self-consistency condition
x52]Fmf /]h, which leads to the classical Curie-Wei
EOS

x~T,h!5pCW~x;T,h!, ~B3!

where

pCW~x;T,h!5tanhS J̃e f f~T!

T
x1

h

T
D . ~B4!

The equivalent result may be obtained starting from the L
dau potentialFL(T,h,x) completed by the extremum cond
tion ]FL(T,h,x)/]xuT,h50.

Equations~B3! and ~B4! give

h52 J̃x1T arctanh~x!, ~B5!

which definesx(T,h) and leads to the following form of the
Landau potential:

FL~T,h,x!52
J̃

2
x21Tx arctanh~x!1

T

2
ln~12x2!2xh.

~B6!

The thermodynamic potentialF(T,h) is simply expressed
through the Landau potential:

F~T,h!5FL„T,h,x~T,h!….
01150
-

-

The introduction of other internal degrees of freedom likes i
in the mean-field approximation leads only to the effect
temperature dependence ofJ̃. Thus the expression~32! is
justified.

The mean-field equation of state for the Ising-like mod
of H-bond mixture was obtained in Sec. I@see Eq.~10!#.
Note that any approximate approach to the EOS is base
the condition of self-consistency:x5p(x;T,h). In particular,
the explicit form ofp can be determined by Eq.~10!. For the
Curie-Weiss EOS it is given by Eq.~B4!. Though the func-
tion p is determined within the specific model of type~10!,
nevertheless there are the following natural demands
posed on it:~1! p(x50;T,h50)50, ~2! p(x;T,h)<1, ~3!
p(x;T,h) is the monotonic function ofx.

Because of these properties the relation between in
model and the corresponding Ising model with the effect
‘‘spin-spin’’ interaction J̃e f f(T) can be defined as follows

p~x;T,h!5tanhS J̃e f f~T,h!

T
x̃1

h

T
D . ~B7!

Equation~B7! defines the ‘‘magnetization’’x̃ of correspond-
ing effective Ising model with someJ̃e f f(T,h). The explicit
expression for theJ̃e f f(T,h) follows from the natural con-
straint

x̃~x51;T,h!51,

which according to Eq.~B7! gives

J̃e f f~T,h!5T arctanh@p~1;T,h!#2h. ~B8!

For the models described in Sec. II this procedure gives
value of J̃e f f(T,h) according to

^sinh@b J̃~s!x1h#&s

^cosh@b J̃~s!x1h#&s

5tanhS J̃e f f~T,h!

T
x̃1

h

T
D . ~B9!

Note that because of vanishing ofF(T,h) at x50 and h
50 it is the excess part of the thermodynamic potential.

APPENDIX C: FLUCTUATION-MULTIPOLE
INTERACTION BETWEEN ADMIXTURE MOLECULES

For the sake of simplicity we assume that the structure
H-bond network is only violated in the monomolecular lay
adjoint to CCl4. Such an assumption is verified by the resu
of computer experiments for ions in water@44#. Due to this,
the spontaneous dipole momentd(s) of the complex-
admixture molecule and its nearest surroundings arises@48#.
Such an elementary complex may be polarized by the e
tric field of other elementary complexes and acquires
induced dipole momentd( i ). As a result the interaction en
ergy U(r ) of two elementary complexes can be represen
in a form

U~r !5Uw~r !1Ud~r !,
1-10
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whereUw is the potential of standard van der Waals inter
tion @39# andUd is the average value of the energy of dipo
dipole interactions:

Ud~r !5^U~r ud1 ,d2!&.

The general expression forU(r ud1 ,d2)&:

U~r ud1 ,d2!5
1

er 3 Fd1•d223
~d1•r !~d2•r !

r 2 G ,

wheree is the dielectric permittivity of the medium. In ac
cordance with the above,

U~r ud1 ,d2!5U~r ud1
(s) ,d2

(s)!1U~r ud1
(s) ,d2

( i )!

1U~r ud1
( i ) ,d2

( i )!, ~C1!

caused by the spontaneous or induced constituents of d
moments of two elementary complexes.

To find ^U(r ud1
(s) ,d2

(s))& the distribution function
g(r ud1

(s) ,d2
(s)) of spontaneous dipole moments can be

proximated by the expression

g~r ud1
(s) ,d2

(s)!512bU~r ud1
(s) ,d2

(s)!,

where b51/kBT, kB is the Boltzmann constant. It is no
difficult to see that

^U~r ud1
(s) ,d2

(s)!&52
2

3

b^d1
(s)2

&2

e2r 6
. ~C2!

In fact this contribution toUd has the same character an
origin as Uw . The difference between them is only co
nected with the separation of fluctuations of electromagn
field on intramolecular and extramolecular ones, which ch
acteristic times differ from each other by a factor 103.

To calculate the induced dipole momentd( i ) of an elemen-
tary complex we will model it by a cavity with the effectiv
dielectric permittivity ec!e. In the constant electric field
such a cavity acquires the dipole moment

d52e
12 ẽc

21 ẽc

r a
3E0 ,

whereẽc5ec /e andr a is the radius of a cavity. Substitutin
instead ofE0 the electric field created by the spontaneo
dipole moment of another molecule, we obtain

d2
( i )5

12 ẽc

21 ẽc
S r a

r D 3Fd2
(s)23

~d2
(s)
•r !

r 2
r G .

Restricting our analysis only by effects caused by the re
rocal influence of two molecules only, we get

^U~r ud1
(s) ,d2

( i )!&5^U~r ud1
( i ) ,d2

(s)!&5
2

e

12 ẽc

21 ẽc

^d(s)2
&

r 6
.

~C3!
01150
-

le

-

ic
r-

s

-

The contribution̂ U(r ud1
( i ) ,d2

( i ))& decays asr 29 and can be
omitted. Sinceẽ,(!)1, the interaction of spontaneous an
induced dipole moments has the repulsive character. Bes
the contributions~C2! and ~C3! depend one and r a in dif-
ferent ways. Atr .r * , where

r * 5S ^d„s…2&
6ekBT

D 1/3

, ~C4!

these contributions are reciprocally compensated. To get
numerical estimate forr * we write

^d(s)2
&5dw

2 j2, ~C5!

where dw is the dipole moment of a water molecule. B
order of magnitude the dimensionless parameterj satisfies
the inequality

z<j2,z2. ~C6!

The lower limit in Eq.~47! corresponds to the case of unco
related dipole moments of these molecules, the upper
corresponds to strong correlations between the dipole
ments. From the geometrical reasoning it follows that

z.S r a

r s
D 2

,

where r s is the average size of the solvent molecule. If
solvent is pure water and the admixture molecule is CC4:
r s;1 Å, r a;4 – 5 Å, soz;20. In this case, as follows from
Eq. ~C4! and Eq.~C5!,

r * ;0.531028z2/3 cm;~2 – 3!31028 cm.

A similar estimate is also appropriate for other cases. He
for admixture molecules withr a.r * the repulsive pair in-
teraction by spontaneous and induced dipole moment
dominant. In this case

U~r !5Uw~r !1
2z2

e

12 ẽc

21 ẽc

dw
2

r a
3 S r a

r D 6

.

The detailed analysis shows that up toR* ;15– 20 Å the van
der Waals contribution toU(r ) is small in comparison with
the dipole-dipole one~see Ref.@48#!. Therefore we expec
that all essential peculiarities in the behavior of a solven
the addition of impurities of type CCl4 are caused by the
potential

U~r !.Ud.
2j2

e

12 ẽc

21 ẽc

dw
2

r a
3 S r a

r D 6

.
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